logo

Data Science in Practice

  • Data Science in Practice

Understanding Data

  • Introduction to Data Science
    • What is Data Science?
    • The Scientific Method
    • A Data Science Example
  • The Basics of Tabular Data
    • Tabular Data
    • Tables in python, using Pandas.
    • Table Methods
    • Data Types and Performance
  • Querying and Describing Data
    • Selecting Data
    • Kinds of Data
    • Categorical Distributions
    • Quantitative Distributions
  • Understanding Assumptions and Data Cleaning
    • Modifying DataFrames
    • Cleaning Messy Data
    • Exploratory Data Analysis
    • Hypothesis Testing
  • Aggregation and Extension of Data
    • Data Granularity
    • Understanding Aggregations
    • Combining Data (Observations)
    • Combining Data: Attributes
    • Combining different measurements over the same individuals
    • Permutation Tests
    • Exploratory Data Analysis II
  • Missing Data
    • Definitions
    • Identifying Missing Data
    • Handling Missing Data
    • Single-Valued Imputation
    • Probabilistic Imputation

Collecting Data

  • Data Collection
    • Using Existing Data
    • HTTP Requests
    • Parsing HTML
  • Information Extaction
    • Text Processing
    • Natural Language Processing
  • Introduction to Features
    • Feature Engineering
    • Data Pipelines

Modeling With Data

  • Modeling Basics
    • Introduction to Statistical Models
    • Building Modeling Pipelines
  • Bias and Variance
    • Model Quality (Inference)
    • Model Quality (Prediction)
    • Cross Validation
    • Parameter Search
  • Evaluating Models; Fairness
    • Evaluation metrics
    • Parity Measures
    • Fairness in Machine Learning
Powered by Jupyter Book

Parameter SearchΒΆ

See Lecture Notes

Cross Validation Introduction

By Aaron Fraenkel
© Copyright 2020.